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It is assumed that the specimen is made of glass and that the residual stresses are 
due to quenching, i.e., the plastic-strain tensor is spherical and is described by the ef- 
fective temperature T [1-3]. The temperature of the specimen is below the glass point, so 
that Wertheim's integral law [4, 5] is satisfied. The parameters which characterize the 
specimen do not depend on the axial coordinate z or the components of the stress tensor axz = 
ay z = 0. As simplifications, we assume that the refractive index and the optical photo- 
elastic constant C do not vary. The specimen is examined in the plane normal to the axis 
of the specimen z. 

The problem being studied will actually be broken down into two parts: I) determina~ 

tion of azz by the method of integral photoelasticity; 2) determination of the remaining 
components of the stress tensor ai~ using the solution of the first problem and equations of 
the theory of elasticity. A complete solution to this problem has been obtained only for 
circular cylinders [6-8]. It was based on the solution of the axisymmetric problem of 
thermoelasticity for a circular cylinder [9]. 

In the present study, we extend the method to a section of arbitrary form for an 
arbitrary distribution of the stress azz along the section. The method can be used in 
particular to determine the quenching stresses created in semifinished multilayered light 
guides. 

Previous studies conducted in this area [5, i0] were limited to finding the stress 

O-ZZ �9 
i. When the specimen is examined in the plane normal to the z axis, only ray inte- 

grals are determined [4, 8] 

Here, ann is the stress component which is normal to the ray 2 in the plane x, y. The last 
equation in (I.i) was obtained from the condition of equilibrium of a segment of the cross 
section of the prism in the direction n with allowance for the fact that the prism's 

lateral surface is free of loads and axz = ay z = 0 [I0, Ii]. Thus, determination of azz 
reduces to the standard procedure of inversion of the Radon transform [ii, 12]. 

To find the remaining components of the stress tensor, we use the equations of equi~ 
librium and Hooke's law for a medium with plastic strains. Meanwhile, following [1-3, 8], 
we will determine the plastic strains through the effective temperature T by means of the 
coefficient of linear expansion ~: 8o =~ _--ez z0 _--~?(z,y). 

In the case of plane strain, Hooke's law in this notation becomes the Duhamel-Neumann 
relations [13] (where v is the Poisson's ratio) 

O'i .  i = 2~[giy Jr ~ ) i y [ ~ c e  - -  (f ~- v)aT]/(t --  2v)], 

azz = 2 I X [ r e - -  (t @ v)ar]/(t -- 2v), e =  Sxx @ e~y, i, j = x, !t 

(# i s  t h e  s h e a r  m o d u l u s ;  6ij  i s  t h e  K r o n e c k e r  s y m b o l ) .  
We s a t i s f y  t h e  e q u i l i b r i u m  e q u a t i o n s  by  i n t r o d u c i n g  t h e  A i r y  f u n c t i o n  F: 

0 ~ 
o~j = 6ijAF - -  ~5~  F. (1.2) 
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/ I n s e r t i n g  i n t o  t h e  c o m p a t i b i l i t y  e q u a t i o n  ~ < - -%v:20_U~u~xy  Oy~ xx J ox2 the strain-tensor compo- 

I 
nents p{j----~[~ij--ozz6ij] expressed in terms of F, we obtain the resolvent equation 

[ 

( 1 .3  

The value of F and its normal derivative on the free lateral surface are equal to zero 

[ 1 3 ] .  
2. Let us examine certain features of the use of these equations to determine the 

quenching stresses in semifinished multilayered light guides. Typical of this case is the 

use of a combination of materials in which the shear coefficient decreases by 2-3%. Mean- 

while, the Poisson's ratio may vary by 10-20% [14]. Thus, the difference in the coeffi- 
cient ~ will be no greater than 3% for light guides with a core of borosilicate glass and 

sheath of quartz glass. We can therefore assume that the coefficient # is constant for 

such specimens. 
Equation (1.3) can be simplified as follows 

A2F = A6zz. 

The order of Eq. (2.1) can be reduced by writing it in the form 

(2.1 

AF = C~zz -- Z (2.2 

(X is an arbitrary harmonic function). 

We will prove that in order to solve the boundary-value problem for F, it is 
necessary and sufficient that the function X be equal to the harmonic part of Ozz. For 
this, we multiply both sides of Eq. (2.2) by an arbitrary, twice-differentiable function u 

and we integrate the expression over the cross-sectional area 

(2.3) 

We transform the left side of Eq. (2.3), using Green's formula 

~ ~ (uAF -- FAu) ds = S (u O~ F -- F O u  ) ( 2 . 4 )  

The r i g h t  s i d e  o f  ( 2 . 4 )  i s  e q u a l  t o  z e r o ,  s i n c e  F and i t s  no rma l  d e r i v a t i v e  a t  t h e  b o u n d a r y  
a r e  z e r o .  Thus ,  Eq. ( 2 . 3 )  c h a n g e s  to  t h e  fo rm 

Equation (2.5) should be satisfied for any u. If u is a harmonic function, then the left 

side of (2.5) will be equal to zero. Thus, azz - X should be orthogonal to any harmonic 

function, i.e., X should be equal to the harmonic part of azz. 
We will prove that the above-cited condition for X is sufficient. To do this, we re- 

place u in (2.5) by the elementary solution of theLaplace equation u1:u = u I =[]n]/~ -- %)2 + (y _ ~0)~]/(2~). 
Considering that the Laplace operator of u I is equal to the Dirac delta function, we have 

F (x o, Yo) = Z Z (~zz -- Z) in V "  (x - -  Xo,~2 + ~'y - -  yo) ~ dx dy/(2n). 

It follows from the necessary properties of X that u I is determined to within an additive 

harmonic function. 
In particular, if the distribution of azz depends only on the radius, then the harmon- 

ic part of azz is equal to a constant, the mean value of azz over the cross section. It 
follows from the equilibrium condition that this mean value is equal to zero, i.e., that X 
is also equal to zero. Thus, in this case Eq. (2.2) leads to the summation law [4, 6, 7] 
axx + ayy - azz. It is evident from this example that satisfaction of this law depends on 

the distribution of azz but is independent of the form of the cross section. 
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3. Equation (1.3) has an explicit solution only for particular forms of #(x, y). 
For example, the solution of the boundary-value problem relative to F when #(x, y) = #0/~a+] 
bx + cy) nearly reduces to the case # = const. This result becomes obvious if Eq. (1.3) is 

changed to the form 

0x2 \@2~J ~). 

With an arbitrary function ~(x, y), numerical methods must be used to solve the boundary- 
value problem. Here, it is customary to employ a variational formulation. The solution of 
the given boundary-value problem is equivalent to finding the function F which satisfies 
the boundary conditions and gives the extremum of the functional 

Without going into the details of different numerical methods, let us examine the depen- 
dence of the stress on the shear modulus ~ in the example of the axisymmetric problem for a 
circular two-layer cylinder 

p( r )~ - - i  ~~ a t  O ~ < r < r o ,  
[~ i  a t  ro~<r~< i. 

The solution will be presented in the cylindrical coordinate system r, 9. We will attempt 

to find the unknown components art = ar, a~ = ~v from the equation of equilibrium 

d 

and the compatibility equation 

d 
[(% _ Zzz)/~] = (Or - -  %) /~r .  ( 3. ~_ ) 

It is difficult to use Eq. (1.3) directly in this case, since # is a nondifferentiable 
f u n c t i o n .  E x c l u d i n g  a~ f r o m  ( 3 . 1 ) ,  we e x p r e s s  Ozz i n  t e r m s  o f  a t :  

1 

r 

The  c o n s t a n t  A i s  d e t e r m i n e d  f r o m  t h e  e q u i l i b r i u m  c o n d i t i o n  

1 

f r ~ z z d r = 0 .  
J 
0 

After performing some elementary transformations, we obtain 

[~o--~, O [ ( t - - r  2) a t  0 ~< r < ro, 

a t  ro~r~i" 
(3.2) 

Finding a r from the given Ozz by using Eq. (3.2) reduces to integration. The subsequent 
solution of the problem is elementary. 
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It should be noted that (3.2) can be written in the form of a modified summation law 

I ( t  __ r~ ) a t  O < r < r O  ' 

ozz = or v -4- ~r -Jr" ~o 1~i t~-- to) at r o ~< r ~< t .  ( 3 . 3 )  

Apart from their direct use, Eqs. (3.2) and (3.3) make it possible to evaluate the poten- 
tial of a model with a constant shear modulus ~ for multilayered structures. 

Returning to the above-examined case, we note that quenching stresses are determined 
by the method of integral photoelasticity in the following sequence. First we determine ~zz 
using the inversion of the Radon transform. We then use the solution of boundary-value 
problem (1.3) to find F, and we use (1.2) to find the remaining stress components. 

We thank Kh. K. Aben for his help in completing the study and his participation in 
the discussion of its results. 
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